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Abstract

The propagation of thermoelastic waves in a homogeneous isotropic, thermally conducting plate
bordered with layers of inviscid liquid or half-space of inviscid liquid on both sides is investigated in the
context of generalized theories of thermoelasticity. Secular equations for the plate in closed form and
isolated mathematical conditions for symmetric and antisymmetric wave modes in completely separate
terms are derived. The results for coupled and uncoupled theories of thermoelasticity have been obtained as
particular cases. The different regions of secular equations are obtained and special cases, such as Lame
modes, thin plate waves and short wavelength waves of the secular equations are also discussed. The secular
equations for thermoelastic leaky Lamb waves are also obtained and deduced. The amplitudes of
displacement components and temperature change have also been computed and studied. Finally, the
numerical solution is carried out for an aluminum-epoxy composite and aluminum materials plate bordered
with water. The dispersion curves for symmetric and antisymmetric thermoelastic wave modes and
amplitudes of displacement and temperature change in case of fundamental symmetric (S0) and skew
symmetric (A0) modes are presented in order to illustrate and compare the theoretical results. The theory
and numerical computations are found to be in close agreement. The results have been deduced and
compared with the relevant publications available in the literature at the relevant stages of the work.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, resurgent interest in Lamb waves was partially initiated by its application of
multisensors [1–3]. The density and viscosity sensing with Lamb waves is based on the principle
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that the presence of a liquid in contact with a solid plate changes the propagation velocity and the
amplitude of the Lamb waves in the plate of free boundaries due, respectively, to the inertial and
viscous effects of the liquid. Schoch [4] first investigated the effect of an inviscid liquid on the
propagation of Lamb waves. When a plate of finite thickness is bordered with a half-space
homogeneous liquid on both sides, part of Lamb wave energy in the plate is coupled into the
liquid as radiation; most of the energy is still in the solid. This type of disturbance is called the
leaky Lamb wave. Schoch derived the dispersion relation for leaky Lamb waves for an isotropic
plate and an inviscid liquid. Incidentally, the dispersion equations also have an interface wave
solution whose velocity is slightly less than the bulk sound velocity in the liquid and most of
energy is in the liquid. It is often called the Scholte wave after Scholte [5]. Kurtze and Bolt [6]
derived a dispersion equation for bending waves when a plate is in contact with an inviscid fluid
based on the acoustic impedance concept. Watkins et al. [7] calculated the attenuation of Lamb
waves in the presence of an inviscid liquid using an acoustic impedance method. Wu and Zhu [8]
studied the propagation of Lamb waves in a plate bordered with inviscid liquid layers on both
sides. The dispersion equations of this case were derived and solved numerically. It was also
shown that the acoustic impedance approach is valid only when the plate thickness is much
smaller than the wavelength of the transverse wave in the solid. Zhu and Wu [9] derived the
dispersion equations of Lamb waves of a plate bordered with viscous liquid layer or half-space
viscous liquid on both sides. Numerical solutions of the dispersion equations related to sensing
applications are obtained.

The temperature of a deformable body can vary both with time and from point to point. This
variation can be caused both by heat exchange with external medium and by the process of
deformation itself during which a part of the mechanical energy is transformed into heat. The
thermoelastic energy degradation is one of the causes of damping of elastic body vibrations. The
classical theory of heat conduction predicts an infinite speed of heat transportation, which
contradicts the physical facts. During the last three decades, non-classical theories have been
developed to alleviate this paradox. Lord and Shulman [10] incorporated a flux-rate term in
Fourier’s law of heat conduction in order to formulate a generalized theory that admits finite
speed for thermal signals. Green and Lindsay [11] included a temperature rate among the
constitutive variables to develop a temperature rate dependent thermoelasticity that does not
violate the classical Fourier’s law of heat conduction when the body under consideration has a
center of symmetry; this theory also predicts a finite speed of heat propagation. According to
these theories, heat propagation should be viewed as a wave phenomenon rather than a diffusion
phenomenon. A wave-like thermal disturbance is referred to as ‘second sound’ by Chandrase-
kharaiah [12]. These theories are also supported by experiments exhibited the actual occurrence of
second sound at low temperatures and small intervals of time. Researchers such as [13–15]
experimentally proved for solid helium that thermal waves (second sound) propagating with finite,
though quite large, speed also exist, although for most of the solids, the corresponding frequency
window namely, range of frequency of thermal excitations in which thermal waves can be detected
is extremely limited. Sharma et al. [16], Sharma [17] and Sharma and Singh [18] studied the
propagation of thermoelastic waves in homogeneous isotropic plates subjected to stress free
insulated, stress free isothermal, rigidly fixed insulated and rigidly fixed isothermal boundary
conditions in the context of Conventional-Coupled (CT), Lord–Schulman (LS), Green–Lindsay
(GL) and Green–Nagdhi (GN) theories of thermoelasticity. The secular equations for the
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symmetric and antisymmetric wave modes in the plate have been derived in the compact form and
solved numerically.

In the present paper, we present analysis of Lamb type wave propagation in a thermoelastic
plate bordered with an inviscid liquid layer or half-space inviscid liquid on both sides. More
general dispersion equations of thermoelastic Lamb type waves are derived and discussed in
coupled and uncoupled theories of thermoelasticity. In uncoupled theory, i.e., in the absence of
thermal variations, the analysis reduces to that of Wu and Zhu [8] in case of elastic plate and
thermal part of the motion separates out from rest of the motion. The secular equations for
different conditions of solution have been deduced from the present one. Numerical solution of
the dispersion equations and displacement magnitudes for an aluminum-epoxy composite is also
presented.

2. Formulation and solution of the problem

We consider an infinite homogeneous isotropic, thermally conducting elastic plate of thickness
2d initially at uniform temperature T0: The plate is bordered both on the top and bottom with
infinitely large homogeneous inviscid liquid layers of thickness h (If h-N; it becomes the leaky
Lamb wave type case). We take origin of the co-ordinate system (x, y, z) on the middle surface of
the plate. The x–y plane is chosen to coincide with the middle surface and the z-axis normal to it
along the thickness as illustrated in Fig. 1 below. We take x–z plane as the plane of incidence and
we assume that the solutions are explicitly independent of y but implicit dependence is there so
that transverse component v of displacement is non-vanishing.

In view of this the non-dimensional basic governing equations of motion and heat conduction,
in the context of generalized thermoelasticity for the solid plate in the absence of heat sources and
body forces are [16,17]

u;xx þð1� d2Þw;xz þd2u;zz �ðT þ t1d2k
’TÞ;x ¼ .u; ð1Þ

ð1� d2Þu;xz þd2w;xx þw;zz �ðT þ t1d2k
’TÞ;z ¼ .w; ð2Þ

T ;xx þT ;zz �ð ’T þ t0 .TÞ ¼ A½ ’u;x þ ’w;z þt0d1kð .u;x þ .w;z Þ�; ð3Þ

d2ðv;xx þv;zz Þ ¼ .v; ð4Þ
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Fig. 1. Geometry of the problem.
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where

x0 ¼ o	x=c1; z0 ¼ o	z=c1; t0 ¼ o	t; u0 ¼ ro	c1u=bT0; T 0 ¼ T=T0; t01 ¼ o	t1;

t00 ¼ o	t0; w0 ¼ ro	c1w=bT0; v0 ¼ ro	c1v=bT0; o	 ¼ Ceðlþ 2mÞ=K ;

A ¼ b2T0=rCeðlþ 2mÞ; s0ij ¼ sij=bT0; d2 ¼ c22=c21; c21 ¼ ðlþ 2mÞ=r; c22 ¼ m=r;

d ¼ o	d=c1; h0 ¼ ho	=c1; b ¼ ð3lþ 2mÞat: ð5Þ

The dot notation is used for time differentiation and comma denotes spatial derivatives. Here
l; m are Lame’s parameters, r is the density of the solid, o	 is the characteristic frequency of the
solid plate, A is the thermomechanical coupling constant, at;Ce are, respectively, the coefficient of
linear thermal expansion and specific heat at constant strain of the solid plate, Tðx; z; tÞ is
temperature change and c1; c2 are, respectively, the longitudinal and shear wave velocities in the
solid plate and uðx; z; tÞ ¼ ðu; v;wÞ is the displacement vector.dik is the Kronecker’s delta with
k ¼ 1 for LS theory and k ¼ 2 for GL theory. K is the thermal conductivity and t0 and t1 is
thermal relaxation times. Eq. (4) corresponds to purely transverse (SH) wave, which uncoupled
from the rest of the motion and does not depend on the thermal variations and thermal relaxation
times. Hence, this equation will not be considered in the following analysis and the resulting
problem will be a planar problem. In the solid, we take

u ¼ f;x þc;z ;w ¼ f;z �c;x ; ð6aÞ

where f; c are the velocity potential functions of longitudinal and shear waves in the solid. In the
liquid boundary layers, we have

u1 ¼ f1;x þc1;z ; w1 ¼ f1;z �c1;x ; ð6bÞ

u2 ¼ f2;x þc2;z ; w2 ¼ f2;z �c2;x ; ð6cÞ

where fj and cj; j ¼ 1; 2 are, respectively, the scalar velocity potential and vector velocity
component along the y direction for the top liquid layer ðj ¼ 1Þ and for the bottom liquid layer
ðj ¼ 2Þ; uj and wj are, respectively, x and z components of the particle velocity in the layers of
liquid. The potential functions f;c;fj and temperature T all satisfy the non-dimensional basic
governing equations

r2c�
1

d2
.c ¼ 0; ð7Þ

r2f� .f ¼ T þ t1d2K
’T; ð8Þ

r2T � ð ’T þ t0 .TÞ ¼ Ar2ð ’fþ t0d1k
.fÞ; ð9Þ

r2fj �
1

d2L
.fj ¼ 0; j ¼ 1; 2; ð10Þ

where

d2L ¼
c2L
c21
; c2L ¼

lL

rL

: ð11Þ

Here cL is the velocity of sound in the liquid and lL is the bulk modulus.
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We assume solutions of the form

ff;c;T ;f1;f2g ¼ f %fðzÞ; %cðzÞ; %TðzÞ; %f1ðzÞ; %f2ðzÞgeixðx�ctÞ; ð12Þ

where c ¼ o=x is the non-dimensional phase velocity, o is the frequency and x is the wave
number. Upon using solutions (12) in Eqs. (7)–(10) and solving the resulting differential
equations, the expressions for f;c;T ;f1 and f2 are obtained as

f ¼
P2

k¼1ðAk sin mkz þ Bk cos mkzÞeixðx�ctÞ

c ¼ ðA3 sin bz þ B3 cos bzÞeixðx�ctÞ

T ¼ io�1t�1
1

P2
k¼1ða

2 � m2
kÞðAk sin mkz þ Bk cos mkzÞeixðx�ctÞ

9>>=
>>;2dozod; ð13Þ

f1 ¼ A4 sin g½z � ðd þ hÞ�eixðx�ctÞ; dozod þ h; ð14Þ

f2 ¼ A5 sin g½z þ d þ h�eixðx�ctÞ; �ðd þ hÞozo� d; ð15Þ

where

a2 ¼ x2ðc2 � 1Þ; b2 ¼ x2
c2

d2
� 1

� �
; g2 ¼ x2

c2

d2L
� 1

 !
; m2

k ¼ x2ða2
kc2 � 1Þ;

k ¼ 1; 2; t0 ¼ t0 þ io�1; t00 ¼ t0d1k þ io�1; t1 ¼ t1d2k þ io�1; ð16Þ

a2
1; a

2
2 ¼ fð1þ t0 � ioAt00t1Þ7½ð1� t0 � ioAt00t1Þ

2 � 4ioAt0t00t1�
1=2g=2:

The main difference between this case and the case of leaky Lamb waves is that the
functions f1 and f2 here are chosen in such a way that the acoustical pressure is zero at z ¼
7ðd þ hÞ; in other words f1 and f2 here are of standing wave solutions, for leaky Lamb waves
they are of traveling waves. The boundary conditions at the solid–liquid interfaces z ¼ 7d to be
satisfied are:

(i) The magnitude of the normal component of the stress tensor of the plate should be equal to
the pressure of the liquid. This implies that

.f� 2d2ðf;xx þc;xz Þ ¼
o2rL

r
fj; j ¼ 1; 2: ð17aÞ

(ii) The tangential component of the stress tensor should be zero, implying that

2f;xz þc;zz �c;xx ¼ 0: ð17bÞ

(iii) The normal component of the displacement of the solid should be equal to that of the liquid.
This leads to

f;z �c;x ¼ fj;z ; j ¼ 1; 2: ð17cÞ

(iv) The thermal boundary condition is given by

T ;z þHT ¼ 0; ð17dÞ
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where H is the heat transfer coefficient. Using Eqs. (13)–(15) in Eq. (17), the following eight
equations in eight unknowns A1;A2;A3;A4;A5;B1;B2 and B3 can be readily obtained:

�d2ðb2 � x2Þ½A1s1 þ B1c1 þ A2s2 þ B2c2� � 2ixbd2½A3c3 � B3s3� �
o2rL

r
s4A4 ¼ 0;

�d2ðb2 � x2Þ½�A1s1 þ B1c12A2s2 þ B2c2� � 2ixbd2½A3c3 þ B3s3� þ
o2rL

r
s4A5 ¼ 0;

2ix½m1c1A1 � m1s1B1 þ m2c2A2 � m2s2B2� þ ðx2 � b2ÞðA3s3 þ B3c3Þ ¼ 0; ð18Þ

2ix½m1c1A1 þ m1s1B1 þ m2c2A2 þ m2s2B2� þ ðx2 � b2Þð�A3s3 þ B3c3Þ ¼ 0;

m1c1A1 � m1s1B1 þ m2c2A2 � m2s2B2 � ixðs3A3 þ c3B3Þ � gc4A4 ¼ 0;

m1c1A1 þ m1s1B1 þ m2c2A2 þ m2s2B2 � ixð2s3A3 þ c3B3Þ � gc4A5 ¼ 0;

ða2 � m2
1Þ½ðm1c1 þ Hs1ÞA1 þ ð�m1s1 þ Hc1ÞB1�

þ ða2 � m2
2Þ½ðm2c2 þ Hs2ÞA2 þ ð�m2s2 þ Hc2ÞB2� ¼ 0;

ða2 � m2
1Þ½ðm1c1 � Hs1ÞA1 þ ðm1s1 þ Hc1ÞB1� þ ða2 � m2

2Þ½ðm2c2 � Hs2ÞA2 þ ðm2s2 þ Hc2ÞB2� ¼ 0;

where ck ¼ cos mkd; sk ¼ sin mkd; k ¼ 1; 2; c3 ¼ cos bd; s3 ¼ sin bd; c4 ¼ cos gh; s4 ¼ sin gh:
Eqs. (18) will have a non-trivial solution iff the determinant of their coefficients is zero. After

some algebraic manipulations of the determinant along with conditions ga0 and ghað2n �
1Þp=2; n ¼ 1; 2; 3y this leads to the following secular equations:

T1

T3


 �71

�
m1ða2 � m2

1Þ
m2ða2 � m2

2Þ
T2

T3


 �71

þ
rLc2x2ðb2 þ x2Þm1ðm2

1 � m2
2Þ

grd2ðx2 � b2Þ2ða2 � m2
2Þ

T4

½T3�71
þ

4x2bm1H

ðx2 � b2Þ2m2

T1T2

T3


 �71

1þ
rLc2ðb2 þ x2Þ

4grd2b

T4

T3½ �71


 �
T1

T3


 �81

�
m2ða2 � m2

1Þ
m1ða2 � m2

2Þ
T2

T3


 �81
" #

þ
ðx2 � b2Þ2ðm2

1 � m2
2Þ

4x2bm1ða2 � m2
2Þ

( )

¼ �
4x2bm1ðm2

1 � m2
2Þ

ðx2 � b2Þ2ða2 � m2
2Þ
: ð19Þ

Here, the superscript + corresponds to skew symmetric and � refers to symmetric modes and
Tk ¼ tan mkd; k ¼ 1; 2; T3 ¼ tan bd; T4 ¼ tan gh:

If we let rL approach to zero, Eqs. (19) reduce to the dispersion equation for Lamb type waves
of free boundaries in a thermoelastic plate. Eq. (19) for rL-0 reduces to

T1

T3


 �71

�
m1ða2 � m2

1Þ
m2ða2 � m2

2Þ
T2

T3


 �71

þ
4x2bm1H

ðx2 � b2Þ2m2

T1T2

T3


 �71
T1

T3


 �81

�
m2ða2 � m2

1Þ
m1ða2 � m2

2Þ
T2

T3


 �81
(

þ
ðx2 � b2Þ2ðm2

1 � m2
2Þ

4x2bm1ða2 � m2
2Þ

)
¼ �

4x2bm1ðm2
1 � m2

2Þ

ðx2 � b2Þ2ða2 � m2
2Þ
; ð20Þ

ARTICLE IN PRESS

J.N. Sharma, V. Pathania / Journal of Sound and Vibration 268 (2003) 897–916902



which is the secular equation for Lamb type plate waves in a stress free thermoelastic plate. For a
stress free thermally insulated ðH-0Þ thermoelastic plate the secular equation (20) becomes

T1

T3


 �71

�
m1ða2 � m2

1Þ
m2ða2 � m2

2Þ
T2

T3


 �71

¼ �
4x2bm1ðm2

1 � m2
2Þ

ðx2 � b2Þ2ða2 � m2
2Þ

ð21Þ

and for a stress free isothermal ðH-NÞ plate, we have

T1

T3


 �81

�
m2ða2 � m2

1Þ
m1ða2 � m2

2Þ
T2

T3


 �81

¼ �
ðx2 � b2Þ2ðm2

1 � m2
2Þ

4x2bm1ða2 � m2
2Þ

: ð22Þ

Eqs. (21) and (22) are the same as those obtained and discussed by Sharma et al. [16] and
Sharma [17] in the case of stress free thermally insulated thermoelastic plate.

3. Discussion of the secular equation

3.1. Regions of the secular equation

From Eqs. (16), we have

a2 ¼ x2ðc2 � 1Þ ¼ o2 � x2;b2 ¼ x2
c2

d2
� 1

� �
¼

o2

d2
� x2;m2

k ¼ x2ða2
kc2 � 1Þ ¼ a2

ko
2 � x2; k ¼ 1; 2:

Here depending on whether x2Xo2;o2=d2; a2
1o

2; a2
2o

2 or c2p1; d2; 1=a2
1; 1=a2

2; we may have
a; b;m1;m2 being real, zero or imaginary. Then the frequency equation (19) is correspondingly
altered as follows.

3.1.1. Region I

For x > o=d implying that cod; 1; 1=a1; 1=a2 and consequently, we have a ¼ ia0; b ¼ ib0; mk ¼
iak; k ¼ 1; 2: In this case the secular equation is written from Eq. (19) by replacing circular
tangent functions of a; b and mk; k ¼ 1; 2 with hyperbolic tangent functions of a0;b0 and ak; k ¼
1; 2:

3.1.2. Region II
For o=d > x > o; it follows that doco1; and the frequency equation in this case is obtained

from Eq. (19) by replacing circular tangent functions of a and mk; k ¼ 1; 2 with hyperbolic
tangent functions of a0 andak; k ¼ 1; 2:

3.1.3. Region III

For xoo; it follows that c > 1 and the frequency equation is given by Eq. (19).

3.2. Waves of short wavelength

Some information on the asymptotic behavior is obtainable by putting x-N: If we take
x > o=d; it follows that x > o and that cod; 1: In this case the roots of the secular equation lie in
region I and then we replace a; b;m1 and m2 in the frequency equation (19) by ia0; ib0; ia1 and ia2:
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For x-N; tanh akd=tanh b0d-1; k ¼ 1; 2; ðtanh akdÞðtanh b0dÞ-1; k ¼ 1; 2; tan gh=tanh b0d-
�i; so that the frequency equation reduces to

2�
c2

d2

� �2

½a21 þ a1a2 þ a22 � 1þ c2� � 4b0a1a2ða1 þ a2Þ ¼ 7
ic4rLa1a2ða1 þ a2Þ

rd4ðc2=d2L � 1Þ1=2
; ð23Þ

which is the dispersion equation for thermoelastic Rayleigh waves of an infinite half-space solid
bordered with an infinite half-space homogeneous liquid. The dispersion equation for
thermoelastic Rayleigh waves of an infinite half-space solid bordered with a homogeneous liquid
layer of thickness h is given as

2�
c2

d2

� �2

½a21 þ a1a2 þ a22 � 1þ c2� � 4b0a1a2ða1 þ a2Þ ¼ 8
c4rLa1a2ða1 þ a2Þ

rd4ðc2=d2L � 1Þ1=2
tan gh: ð24Þ

If rL approaches to zero, Eqs. (23) and (24) reduce to

2�
c2

d2

� �2

½a21 þ a1a2 þ a22 � 1þ c2� ¼ 4b0a1a2ða1 þ a2Þ; ð25Þ

which is merely the Rayleigh surface wave equation [16,17] in a stress free thermally insulated
thermoelastic half-space solid. In case of uncoupled theory of thermoelasticity ðA-0Þ; we have
a2
1 ¼ 1; a2

2 ¼ t0 which leads to a21 ¼ a2 ¼ c2 � 1 and a22 ¼ t0c2 � 1: Eqs. (23) and (24), respec-
tively, reduce to

2�
c2

d2

� �2

�4b0a1 ¼ 7
ic4rLa1
rd4

c2

d2L
� 1

 !�1=2

;

2�
c2

d2

� �2

�4b0a1 ¼ 8
c4rLa1
rd4

c2

d2L
� 1

 !�1=2

tan gh;

which are equivalent to Eqs. (A.1) and (A.2) of Wu and Zhu [8] in non-dimensional form.
It seems that Eq. (24) can be obtained by multiplying the right side of Eq. (23) by a factor of

i tan gh: This also seems to be true for the case of Lamb waves. The dispersion equations for leaky
Lamb waves, i.e., Lamb waves in an isotropic plate bordered with an infinite half-space
homogeneous liquid ðh-NÞ at both sides, are as follows:

T1

T3


 �71

�
m1ða2 � m2

1Þ
m2ða2 � m2

2Þ
T2

T3


 �71

þ
rLc2x2ðb2 þ x2Þm1ðm2

1 � m2
2Þ

igd2rðx2 � b2Þ2ða2 � m2
2Þ

1

T3


 �71

þ
4x2bm1H

ðx2 � b2Þ2m2

T1T2

T3


 �71

1þ
rLc2ðb2 þ x2Þ

4igd2br

1

T3


 �71
" #

T1

T3


 �81

�
m2ða2 � m2

1Þ
m1ða2 � m2

2Þ
T2

T3


 �81
" #(

þ
ðx2 � b2Þ2ðm2

1 � m2
2Þ

4x2bm1ða2 � m2
2Þ

)

¼ �
4x2bm1ðm2

1 � m2
2Þ

ðx2 � b2Þ2ða2 � m2
2Þ
: ð26Þ

If we multiply a factor of i tan gh to terms containing rL in Eqs. (26), the dispersion equation
(19) of Lamb waves in an isotropic thermoelastic plate bordered with a homogeneous layer of
thickness h on both sides can be obtained. Since Lamb waves are special cases of Rayleigh waves
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(d approaches infinity), this type of analogy seems reasonable and this result also agrees with Wu
and Zhu [8] in case of elastokinetics in the absence of temperature change.

3.3. Lame modes

A special class of exact solutions called the Lame modes but evidently first identified by Lamb
in 1917, can be obtained by considering the special case of x ¼ b: The roots for this case are in
region II and the frequency equations reduce to

Symmetric: tan bd-N ) b ¼ np=2d; ðn ¼ 1; 3; 5;yÞ:
Antisymmetric: tan bd ¼ 0 ) b ¼ np=2d; ðn ¼ 0; 2; 4;yÞ:
Here the frequency is given by

o ¼
ffiffiffi
2

p
bd ¼ npd=

ffiffiffi
2

p
d n ¼ 0; 1; 2; 3yð Þ:

Clearly, as expected, these modes do not depend upon the thermal effects and presence of the
liquid.

3.4. Thin plate results

Let us consider the case when the transverse wavelength with respect to thickness of the plate is
quite large, so that 2p=b; 2p=a; 2p=m1; 2p=m2Xd: Regions I and II yield the results of interest in
this case. In region I the symmetric case has no root. For skew symmetric case on retaining the
first two terms in the expansion of hyperbolic tangents and the frequency equation for H-0;
reduces to

ðx2 � b02Þ2 �
4

3
x2b04d2 þ

a02d2

3
ðx2 þ b02Þ2 ¼

rLc2x2ðx2 � b02Þ

dgrd2
tan gh: ð27Þ

This on discarding the terms of higher order than ðc=dÞ4; leads to

c ¼ 2xdd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� d2Þ

3

s
1�

rLh

rd

� ��1=2

; ð28Þ

which in the absence of liquid rL-0 becomes

c ¼ 2xddfð1� d2Þ=3g1=2: ð29Þ

This result, with linear dependence of c on x agrees with that derived from classical plate theory
in elastokinetics and of course pertains to the flexure vibration and represents only a single
vibrational mode in limited frequency range in the over all frequency spectrum. No effect of
thermomechanical coupling or thermal relaxation time has been observed on thin plates in this
case. But the presence of liquid on both sides of the plate affects the phase velocity of flexural
vibrational mode as a periodic function of liquid layers width. In region II the antisymmetric case
has no roots and the secular equation in symmetric case becomes

a02 � a21 � a22 þ
4x2a21a

2
2

ðx2 � b2Þ2
¼ �

rLc2x2ðx2 þ b2Þa21a
2
2d tan gh

grd2ðx2 � b2Þ2
; ð30Þ
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which for LS theory implies that

c ¼ 2d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

d2

1þA

s
P

2
17

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

Q

P2

r !" #1=2
; ð31aÞ

where

P ¼ 1þ
1

4d2t0ð1þA� d2Þ
and Q ¼

1� d2ð1þAÞ

d2t0ð1þA� d2Þ2
;

and for GL theory, we have

c ¼ 2d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

d2

1þ ðt1=t0ÞA

s
R

2
17

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

S

R2

r !" #1=2
; ð31bÞ

where

R ¼ 1þ
1

4d2t0 1þ ðt1=t0ÞA� d2
� � and S ¼

1� d2

d2t0 1þ ðt1=t0ÞA� d2
� �2:

Thus, the phase velocity is approximately given by c ¼ 2d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d2= 1þAð Þ

q
; which is the thin

plate or plane stress analogue of the bar velocity of longitudinal rod theory in coupled
thermoelasticity. In general, here the wave mode depends upon the thermoelastic coupling
parameter and thermal relaxation times whose phase velocity is given by Eqs. (31) in case of
generalized thermoelasticity. The phase velocity in this case also depends upon the thickness of the
plate in addition to its periodic dependence on the thickness of the liquid layers. Thus in case of
thin plates xd{1; fundamental symmetric ðS0Þ mode becomes dispersionless, the phase velocity is

equal to the group velocity and equal to 2d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d2=ð1þAÞ

q
approximately, thermal relaxation

time being small. The fundamental skew symmetric ðA0Þ mode meanwhile, becomes the flexural or
bending wave of the plate with its phase velocity approximately equal to 2xdd½ð1� d2Þ=3�1=2 and
its group velocity equals to 4xdd½ð1� d2Þ=3�1=2: For a thin plate, A0 mode is essentially a
transverse mode, i.e., the z-component of the displacement dominates. On the contrary, for S0

mode of a thin plate the x-component of the displacement dominates. For an ideal liquid (no
viscosity) energy of Lamb waves can only be coupled into the liquid through the z-component of
displacement at the plate surface. This explains why A0 mode of a thin plate is the choice for
biosensing applications. The above thin plate analysis reduces to that of Wu and Zhu [8] in
elastokinetics, i.e., in case of uncoupled thermoelasticity when we set A ¼ 0; t0 ¼ 0 ¼ t1 namely,
in the absence of temperature change.

4. Uncoupled thermoelasticity

In case of uncoupled thermoelasticity, the thermomechanical coupling constant A ¼ 0; which
leads to a2

1 ¼ 1; a2
2 ¼ t0 so that m2

1 ¼ a2; m2
2 ¼ x2ðt0c2 � 1Þ: Consequently, the secular equation
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(19) reduce to

T1

T3


 �71

þ
arLc2x2ðb2 þ x2Þ

grd2ðx2 � b2Þ2
T4

T3½ �71
þ

4x2baH

ðx2 � b2Þ2m2

T1T2

T3


 �71
T1

T3


 �81

1þ
rLc2ðb2 þ x2Þ

4gd2br

T4

½T3�71


 �(

þ
ðx2 � b2Þ2

4x2ba

�
¼ �

4x2ba

ðx2 � b2Þ2
: ð32Þ

If we let H-0; Eq. (32) becomes

T1

T3


 �71

þ
arLc2x2ðb2 þ x2Þ

grd2ðx2 � b2Þ2
T4

½T3�71
¼ �

4x2ba

ðx2 � b2Þ2
ð33Þ

and for H-N; Eq. (32) becomes

T1

T3


 �81

þ
rLc2ðb2 þ x2Þ

4gd2br

T4

½T1�71
¼ �

ðx2 � b2Þ2

4x2ba
: ð34Þ

In the absence of liquid rL-0 Eqs. (33) and (34), respectively, reduce to

T1

T3
¼ �

4x2ba

ðx2 � b2Þ2


 �81

ð35aÞ

and

T1

T3
¼ �

ðx2 � b2Þ2

4x2ba


 �71

: ð35bÞ

Eqs. (35) are the same as obtained by Sharma [17] and discussed in detail by Graff [19] in case
of stress free boundary conditions in elastokinetics in the absence of temperature change. Eq. (33)
is similar to the one obtained by Wu and Zhu [8] in the non-dimensional form (cf. Eqs. (5) and (6))
for Lamb waves in elastokinetics in such conditions. If we let rL approach to zero, Eq. (33)
recovers the dispersion equations for Lamb waves of free boundaries in an elastic plate. Also one
observation of the dispersion equations (19), (32) and (33) is that, the thickness ‘h’ of the liquid
layer is a parameter of the periodic tangent function. This reflects the periodic nature of the
influence due to the presence of the liquid layers of varying thickness on both symmetric and skew
symmetric modes of wave propagation in the plate, which has been also confirmed by numerical
calculations discussed in the forthcoming section.

5. Displacement and temperature amplitudes

Using Eqs. (5) and (13), the amplitude wasy of displacement z-component, the amplitude usy of
displacement x-component and the amplitude Tsy of temperature may be calculated as

wasy ¼

ð4x2bs3 þ T4c3Þm1m2ðc01c2 � c1c02Þ � ðx2 � b2Þ2c3ðm2c02s1 � m1c01s2Þ

�2x2c03ðx
2 � b2Þðm1c1s2 � m2c2s1Þ

" #
A1e

ixðx�ctÞ

4x2bm2c2s3 þ ðx2 � b2Þ2c3s2 þ T4m2c2c3
; ð36Þ
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usy ¼

�ix
ð4x2bc3 � T4s3Þðm1s1c02 � m2s2c01Þ þ ðx2 � b2Þ2s3ðc1c02 � c01c2Þ

þ2bc03ðx
2 � b2Þðm2s2c1 � m1s1c2Þ

" #
B1e

ixðx�ctÞ

4x2bm2s2c3 þ ðx2 � b2Þ2c2s3 � T4m2s2s3
; ð37Þ

Tsy ¼

io�1t�1
1

ð4x2bc3 � T4s3Þððm2s2c01 � m1s1c02Þa
2 þ m1m2ðm2c02s1 � m1c01s2ÞÞ

�ðx2 � b2Þ2s3ððc1c02 � c01c2Þa2 þ c01c2m2
1 � c1c02m2

2Þ

" #
B1e

ixðx�ctÞ

4x2bm2s2c3 þ ðx2 � b2Þ2c2s3 � T4m2s2s3
; ð38Þ

where

T4 ¼
rL

gr
o2

d2
s4

c4
ðx2 þ b2Þ:

The expressions for �wsy; uasy and Tasy can be obtained from Eqs. (36) to (38), respectively, by
interchanging sk and ck; s0k and c0k; k ¼ 1; 2; 3 and by changing T4 by � T4; A1 with B1 and vice
versa.

If we ignore the thermal effect, the amplitudes wasy of displacement z-component and the
amplitude usy of displacement x-component in elastokinetics are given as

wasy ¼
½2ixbm1c01s3 þ ixðx2 � b2Þc03s1 � T5xm1ðc01c3 � c03c1Þ�A1e

ixðx�ctÞ

2ixbs3 � T5xc3
; ð39Þ

usy ¼
½ðx2 � b2Þbc03c1 � 2x2bc01c3 þ iT5ðx

2c01s3 þ m1s1c03bÞ�B1e
ixðx�ctÞ

2ixbc3 þ T5xs3
; ð40Þ

where

T5 ¼
rL

igr
o2

d2
s4

c4
;

and the expressions for �wsy; uasy can be obtained from Eqs. (39) and (40), respectively, by
interchanging sk and ck; s0k and c0k; k ¼ 1; 3 and by changing T5 with 2T5; A1 with B1 and vice
versa.

6. Acoustic impedance approach

One observation is that wmax is more or less constant with respect to z for thin plates. Under
such circumstances, the plate may be considered as a lump element instead of a distributed system.
In other words the acoustic impedance concept could be used as a good approximation. For
bending waves, the acoustic impedance of the plate ZS is given by [6,20]

ZS ¼ ioM � iBx4=o; ð41Þ

where M is the mass per unit area of the plate, which is equal to rSð2dÞ; B is its bending stiffness,
which is given by ½4d2ð1� ðd2=1þAÞÞ�ð2=3d3Þ: The acoustic impedance of the water layer seen by
the plate ZL may be calculated from the acoustic pressure of the plate divided by the z-component
of the particle velocity at the surface of the plate, which is ZL ¼ irLo tan gh=g:When the plate and
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the fluid layers are coupled together, the total acoustic impedance of the system Z is simply equal
to the equivalent acoustic impedance of ZS and two of ZL in series, i.e., Zt ¼ ZS þ 2ZL: Since the
total impedance of the system Zt is pure imaginary (any irreversible loss is neglected), the phase
velocity of this case can be determined under the condition Zt ¼ 0 [6], which yields M �
Bx4=o2 ¼ �2rL tan gh=g:

It is seen that the results derived by using dispersion relations and through acoustic impedance
approach are found to be in close agreement. Therefore as pointed out by Wu and Zhu [8] in
elastokinetics, it is not a good approximation to consider the thermoelastic plate as a lump
element too. For applications in biosensing, it is useful to consider situation when a thin plate is
bordered with liquid layer on one side and the other side is free. For thin plates, the acoustic
impedance approach is valid one and the total impedance is sum of ZS and ZL: The phase velocity
can be determined by letting ZS þ ZL ¼ 0:

7. Numerical results and discussion

With the view of illustrating the theoretical result obtained in the preceding sections and
comparing these in the various situations, we now present some numerical results. The material
chosen for this purpose is aluminum-epoxy composite the physical data for which is given as [16]

A ¼ 0:073; l ¼ 7:59� 1010 Nm�2; m ¼ 1:89� 1010 Nm�2; T0 ¼ 231C;

r ¼ 2:19� 103 kg m�3 m; K ¼ 2:508 K=m s 1C; Ce ¼ 961:4 J kg�1=1C; o	 ¼ 4:347� 1013 s�1:

The liquid taken for the purpose of numerical calculations is water, the velocity of sound in
which is given by cL ¼ 1:5� 103 m=s: For such choice of engineering material the roots of the
secular equations lie in regions I and II.

From Fig. 2 it is observed that the phase velocity of the lowest symmetric (i.e., fundamental
mode) become dispersionless and gets significantly reduced and effected in the presence of liquid
and remains closer to the velocity of thermoelastic Rayleigh waves in a solid half-space bordered
with a liquid layers on both sides with increasing wave number. The energy transmission takes
place mainly along the surface of the plate because the plate behaves as a semi-infinite medium in
this situation. The lowest skew symmetric mode has zero velocity at vanishing wave number,
which increases to become closer to the velocity of thermoelastic Rayleigh wave with increasing
wave number but also gets reduced and affected due to the presence of liquid. The phase velocities
of higher modes of propagation attain large values at vanishing wave number, which slash down
to become steady and asymptotic to the reduced Rayleigh wave velocity with increasing wave
number. The magnitude of velocity of higher modes is observed to develop at a rate, which is
approximately n-time, the magnitude of the velocity of first mode (n ¼ 1). In the absence of liquid
ðrL-0Þ; the dispersion curves for symmetric and skew symmetric modes of vibration in a stress
free isothermal plate (Eq. (22)) is given in Fig. 4 for comparison purposes. From the comparison
of the dispersion curves in Fig. 2 with those of Fig. 4, it is quite clear that due to the damping
effect of the liquid on both sides of the plate, the phase velocity of fundamental mode decreases in
case of symmetric S0 modes from a value more than unity viz. 1.6741 and increases in case of skew
symmetric A0 modes from zero at vanishing wave number to attain the value 0.208183 which is
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the reduced thermoelastic Rayleigh wave velocity. It is also observed that the phase velocity of the
Lamb type plate waves falls significantly at vanishing wave number in the presence of the liquid
layers as compare to that in the absence of liquid. The dispersion curves become more smoothen
in this case than those in the absence of liquid because of the shock absorption nature of the
liquid. The fundamental skew symmetric ðA0Þ mode is observed to be most effected and sensitive.

The phase velocity profile of symmetric and skew symmetric vibrations with respect to the
thickness of liquid layers is given in Fig. 3 for a unit thickness plate. It is observed that values of
phase velocity are quite high in case of thin plates (at vanishing thickness) except for the
fundamental mode ðn ¼ 0Þ; which slashes down significantly, but steadily to become
asymptotically closer to thickness axis with increasing thickness of the liquid layers. Because
some part of the energy carried by the waves will be leaked and coupled into the liquid when
layers becomes half-space but major part still remains in the solid plate. The phase velocity of
various modes of propagation becomes closer to the velocity of leaky Lamb waves with increasing
thickness of the liquid. The behavior of S0 and A0 modes is again observed to be similar with
varying thickness of the liquid as that of with wave number. The dispersion curves in Fig. 3 also
confirm the periodic nature of the influence due to the presence of the liquid layers of varying
thickness, an observation exhibited by dispersion equation (Fig. 4) in the absence of liquid. In case
of thin plates xd{1; S0 mode becomes dispersionless; the phase velocity is equal to the group
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velocity and equal to 2d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d2=ð1þAÞ

q
approximately, thermal relaxation time being small. A0

mode meanwhile, becomes the flexural or bending wave of the plate, its phase velocity is
approximately equal to 2xdd½ð1� d2Þ=3�1=2and its group velocity is equal to 4xdd½ð1� d2Þ=3�1=2:
For a thin plate, A0 mode is essentially a transverse mode, i.e., the z-component of the
displacement dominates. On the contrary, for S0 mode of a thin plate the x-component of the
displacement dominates. For ideal liquid (no viscosity) energy of Lamb waves can only be coupled
into the liquid through the z-component of displacement at the plate surface. It explains why A0

mode of a thin plate is the choice for biosensing applications. For such applications, it is useful to
consider situations when this plate is bordered with liquid layer on one side and other side is free.
It is also noticed that in order to achieve the same phase velocity, it needs thicker water layer for
thick plate than the thin plate. This is to say that for biosensing applications thinner plate has
higher sensitivity.

Fig. 5 contains plots of the magnitude of non-dimensional amplitude of the z-component of the
displacement ðwÞ for three different values of liquid layer thickness in case of thermoelastic and
elastic plates. Three curves namely, solid, broken line and dotted correspond respectively, to
h ¼ 0:25; 0.5 and 0.75 of the first branch (fundamental) skew symmetric ðA0Þ mode. Fig. 6 shows
the amplitude of the non-dimensional x-component of the displacement ðuÞ in the thermoelastic
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and elastic plates. The meaning of the curves is the same as in Fig. 5. As for as symmetric
fundamental ðS0Þ mode is concerned, the amplitude of the x-component of displacement ðuÞ looks
like the amplitude of the z-component of displacement ðwÞ for A0 mode as shown by Fig. 5 for
thermoelastic and elastic plates. The amplitude of z-component of displacement ðwÞ looks like the
x-component ðuÞ of A0 mode as shown in Fig. 6. The comparison of curves in Fig. 5 reveals that
due to the thermal variations the amplitude of displacement waves increase significantly in
thermoelastic plate as compared to that in elastic plate and hence these amplified signals are easy
to detect in case of sensing applications. The damping effect becomes more and more prominent
with the increase in liquid layer thickness. Similar observations have also been noticed in case of
curves in Fig. 6.

Figs. 7a and b contains the plots of the magnitude of non-dimensional symmetric and skew
symmetric temperature change ðTÞ for three different values of the liquid layer thickness in case of
a thermoelastic plate, respectively. Three curves (solid, broken line and dotted) again corresponds
to h ¼ 0:25; 0.5 and 0.75 of the first branches (fundamental) symmetric ðS0Þ and skew symmetric
ðA0Þ modes. It is observed that the variation of the symmetric and skew symmetric temperature
change ðTÞ; respectively, looks like the amplitudes of symmetric and skew symmetric x-
component of strain.
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8. Conclusions

The propagation of thermoelastic waves in a homogeneous isotropic, thermally conducting
plate bordered with layers of inviscid liquid or half-space of inviscid liquid on both sides, is
investigated in the context of generalized theories of thermoelasticity. The results for uncoupled
theory of thermoelasticity have been obtained as particular cases. The special cases such as Lame
modes, thin plate waves and short wavelength waves of the secular equations are also discussed.
For the waves of short wavelength it is observed that the dispersion equation of thermoelastic
Lamb waves in an homogeneous isotropic plate bordered with a homogeneous layer of thickness h

on both sides can be obtained by multiplying a factor of i tan gh to terms containing rL in the
dispersion equation for thermoelastic leaky Lamb waves. The periodic tangent function of liquid
thickness reflects the periodic nature of the influence due to the presence of the liquid layers of
varying thickness, which is also confirmed by our numerical calculations. This analysis includes
thermal effects and hence is more general as compared to that of Wu and Zhu [8]. The phase
velocity of the lowest symmetric (i.e., fundamental mode) become dispersionless and gets
significantly reduced in the present situation and becomes closer to the velocity of thermoelastic
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leaky Lamb waves in a solid half-space bordered with liquid layers on both sides of the plate with
increasing wave number. The asymptotic closeness of phase velocity to thermoelastic Rayleigh
wave velocity at higher wave number is expected because in this case the energy transmission takes
place mainly along the surface (interfaces) of the plate. The lowest skew symmetric mode has zero
velocity at vanishing wave number, which increases to become closer to the velocity of
thermoelastic leaky Lamb wave with increasing wave number and also gets affected due to the
presence of liquid. The phase velocity of higher modes of propagation attains large values at
vanishing wave number, which slash down to become steady and asymptotic to the reduced
thermoelastic Rayleigh wave velocity with increasing wave number. Due to the thermal variations
the amplitude of displacement waves increases significantly in a thermoelastic plate as compared
to that in elastic plate. The damping effect becomes more and more prominent with the increase of
liquid layer thickness. The behavior of temperature change amplitude is observed to resemble with
the x-component of strain in the plate. The results for elastokinetics can be obtained s particular
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cases from the present analysis by setting the thermomechanical coupling and thermal relaxations
parameters equal to zero.
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